119

Total No. of Questions - 21 Total No. of Printed Pages - 3

Regd.					
No.					

Part – III PHYSICS, Paper-I

(English Version)

Time: 3 Hours]

[Max. Marks: 60

SECTION - A

 $10 \times 2 = 20$

Note: (i) Answer all the questions.

- (ii) Each question carries 2 marks.
- (iii) All are very short answer type questions.
- 1. Which physical quantity has negative dimensions in mass?
- 2. $\overrightarrow{A} = \overrightarrow{i} \overrightarrow{j}$. What is the angle between the vector and x-axis?
- 3. Is it necessary that any mass should be present at the centre of mass of a system?
- 4. What happens to the frictional force if the surface is moderately polished and heavily polished?
- 5. State the practical limits of Poisson's ratio.
- 6. Define surface tension and give its dimensional formula.
- 7. What is SI unit of viscosity? What is its CGS unit?
- 8. State Zeroth law of thermodynamics. What is its significance?
- 9. State Prevost's theory of heat exchanges.
- 10. State Newton's law of cooling.

119 (Day-9)

1

P.T.O.

Note: (i) Answer any six questions.

- (ii) Each question carries 4 marks.
- (iii) All are short answer type questions.
- State parallelogram law of vectors. Derive an expression for the magnitude and direction of the resultant vector.
- Show that the trajectory of an object thrown at certain angle with the horizontal is a parabola.
- Show that two spheres of equal masses moving along a (x-axis) straight line exchange their velocities after a head-on-elastic collision.
- 14. Why pulling the lawn roller is preferred than pushing the lawn roller?
- 15. State and prove perpendicular axes theorem.
- 16. Deduce the relation between 'g' at the surface of a planet and 'G'.
- 17. The mass of a litre of gas is 1.562 gm at 0 °C under a pressure of 76 cm of mercury. The temperature is increased to 250 °C and the pressure to 78 cm of mercury. What is the mass of one litre of the gas under new conditions?
- 18. Show that $C_p C_v = R$ in the case of one mole of ideal gas.

SECTION - C

 $2 \times 8 = 16$

Note: (i) Answer any two of the following questions.

- (ii) Each question carries 8 marks.
- (iii) All are long answer type questions.
- State the law of conservation of energy and verify it in case of a body projected vertically upwards.

A ball is projected vertically upwards from ground with an initial velocity of 9.8 ms⁻¹. Find the maximum height reached by it using the law of conservation of energy.

119 (Day-9)

- 20. Show that the motion of a simple pendulum is simple harmonic and hence derive an equation for its time period. What is seconds pendulum?
- 21. Define the coefficients of expansions of solids and deduce the relation between them. An aluminium rod of length 50 cm is heated so that its temperature increases from 20 °C to 80 °C. If the linear coefficient of expansion of aluminium is 24×10^{-6} /°C find the increase in the length of the aluminium rod.

119 (Day-9)